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We describe a new remapping algorithm for use in Arbitrary-Lagrangian-Eulerian (ALE) 
simulations.  The new features of this remapper are designed to complement a staggered-mesh 
Lagrangian phase in which the cells may be general polygons (in two dimensions), and which uses 
subcell discretizations to control unphysical mesh distortion and hourglassing.  Our new remapping 
algorithm consists of three stages. A gathering stage, in which we interpolate momentum, internal 
energy, and kinetic energy to the subcells in a conservative way. A subcell remapping stage, in which 
we conservatively remap mass, momentum, internal, and kinetic energy from the subcells of the 
Lagrangian mesh to the subcells of the new rezoned mesh. A scattering stage, in which we 
conservatively recover the primary variables: subcell density, nodal velocity, and cell-centered 
specific internal energy on the new rezoned mesh.  We prove that our new remapping algorithm is 
conservative, reversible, and satisfies the DeBar consistency condition. We also demonstrate 
computationally that our new remapping method is robust and accurate for a series of test problems in 
one and two dimensions. 

Introduction 
In numerical simulations of multidimensional fluid flow, the relationship between the motion of 

the computational grid and the motion of the fluid is an important issue.  Two choices that are typically 
made represent either a Lagrangian framework, in which the mesh moves with the local fluid velocity, 
or an Eulerian framework, in which the fluid flows through a grid fixed in space. More generally, 
however, the motion of the grid can be chosen arbitrarily.  The philosophy of the Arbitrary 
Lagrangian-Eulerian methodology (ALE; cf  [12], [1], [2], [17], [13], [20]) is to exploit this degree of 
freedom to improve both the accuracy and the efficiency of the simulation. The main elements of most 
ALE algorithms are an explicit Lagrangian phase, a rezone phase in which a new grid is defined, and a 
remap phase in which the Lagrange solution is transferred to the new grid [17]. Most ALE codes use a 
grid of fixed connectivity that, in two spatial dimensions, is formed by quadrilaterals or by a mix of 
quadrilaterals and triangles, the latter being considered as degenerate quadrilaterals.  Ultimately, we 
are interested in the development of ALE methods for meshes whose connectivity may change during 
the calculation.  In such methods, the total number of cells remains fixed, but the number of edges 
bounding each cell may change with time, leading to the appearance of general polygonal cells. 

As a first step toward this goal, here we consider ALE methods on a mesh with fixed connectivity, 
but allow the mesh to contain general polygonal cells.  Extending the ALE methodology to this more 
general mesh is valuable in of itself  as it simplifies the setup process for computational domains with 
complex geometrical shapes and helps to avoid artificial mesh imprinting due to the restrictions of a 
purely quadrilateral mesh, [4,5]. 

In the rest of this introductory section, we will introduce notation related to a general polygonal 
staggered mesh, will review algorithms for the Lagrangian phase and rezone phase as presented in 
[6,7,14,23], and finally will describe the main ideas of our new remap procedure, which is the main 
topic of this paper. 
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 Polygonal Mesh 
 
We consider a two-dimensional computational domain W assumed to be a general polygon. We 

assume we are given a mesh on W whose cells, {c}, cover the domain without gaps or overlaps. Each 
cell may be a general polygon, and is assigned an unique index that for simplicity will also be denoted 
by c. The set of vertices (nodes) of the polygons is denoted by {n}, where each node has an unique 
index n. Then each cell can be defined by an ordered set of vertices. We denote the set of vertices of a 
particular cell c by N(c). Further, we denote the set of cells that share a particular vertex n by C(n). 

Note that each vertex may be shared by an arbitrary number of cells. We will subdivide each cell 
into a set of quadrilaterals that we will term subcells.  A pair of indexes c and n uniquely defines a 
quadrilateral, identified as subcell cn;  this subcell is constructed by connecting the geometrical center 
of the cell c with the middle points of cell faces having the same node n as one end point and the node 
itself (see figure 1). Hence each cell can be divided uniquely into quadrilaterals (subcells or corners).  

 

 
Figure 1: Grid and notations. The ○ are the cell centers, the ● are the nodes (vertices), the �  are the mid-
face (edge) points. The set of vertices for cell c={12} is N(c=12) = { 5,2,1,4}, and the set of cells sharing 
node, n=39 is C(n=39) = { 1,8,4 }. The gray subcell, cn=6,12 is the quadrilateral defined by connecting 
the geometrical center of the cell c=6 with middle points of cell faces having the same node n=12 as one 
end point and the node itself. 

 

We denote the cell and subcell volumes (in 2D Cartesian geometry these are (x,y) areas) by V(c) 

and V(cn), where by construction 
V c

n N c

V cn
 

A nodal volume can be defined as the sum of the volumes of subcells shared by the node n, 

i.e.,
V n

c C n

V cn
 

 Lagrangian Phase 
The equations of Lagrangian gas dynamics can be written as 

1 d
ñ= u,

ñ dt
!"

r
          

d
ñ u = p,
dt

!"
r

        
d

ñ å= p u
dt

!
r

 

where ρ  is the density, p is the pressure, ε is the specific internal energy, and u u , v  is the 
velocity. The pressure is linked to density and specific internal energy via an equation of state: 
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p p , . We can define mass as m V  where V is the volume, momentum as 

, m u  and total energy as E m

1

2

m u

2

. This previous system of equations is going 

to be solved by the Lagrangian phase. 

 
A discretization of the gas dynamic equations for the Lagrangian phase of the ALE method for a 

mesh consisting of general polygons is described in [6,7], and is based on the philosophy of compatible 
hydrodynamic discretization [10]. This discretization assumes a staggered grid, where the components 

of the velocity vector are defined at the nodes (vertices) of the cells, u n u n , v n , and 

where the thermodynamic variables density  c and internal energy c  are defined at the cell 
centers. In addition to nodal and cell- entered quantities, this discretization employs as additional 

variables the densities of the subcells, c n .  The preservation of subcell mass during the 
Lagrangian phase of the calculation introduces new forces that prevent artificial grid distortion and 
hourglass patterns.  This enhancement of the Lagrangian algorithm was shown to be effective both for 
quadrilateral meshes [8], as well as for polygonal meshes [6]. The Lagrangian phase including subcell 
forces, is conservative;  i.e., discrete forms of mass, momentum, and total energy are conserved [10]. 
The use of subcell masses and corresponding densities places new requirements on the remap phase of 
an ALE method method because these subcell densities have to be remapped in addition to the usual 
remapping of the primary variables - nodal velocities, cell- entered  densities and internal energies.  
We can define the subcell mass in terms of theprimary cell variables as follows: 

m c n cn V cn  

Then the mass of the cell/node are defined: ( )
( )

( ),
n N c

m c = m cn

!

"   ( )
( )

( )
c C n

m n = m cn

!

" . 

All of these masses are employed in the Lagrangian phase of our ALE method. Since the subcell 
mass, m(cn) is assumed to be Lagrangian and so does not change with time, it follows that 

( )
( )

( )
,

cn
ñ cn = m

V cn
 

which serves as a definition of the subcell density for a given subcell mass. The masses of the 
individual cells and nodes are also Lagrangian because they are sums of the masses of the associated 
subcells. The mass of the cell is used in the equation for the internal energy, while the mass of the node 
is used in the momentum equation. Finally, by definition we have 

( )
( )

( )
( )

( )

( )

( )
,

n N c

n N c

m cn
c

ñ c = m =
V c V cn

!

!

"

"
 

The total mass, M, which is conserved in the Lagrangian phase is 
( ) ( ) ( ).

cn c n

M = m cn = m c = m n! ! !  

On the staggered mesh, momentum is most naturally defined at the nodes 

( ) ( ) ( ),ì n = m n u n       ( ) ( ) ( ),í n = m n v n  

or equivalently        ( ) ( ) ( )/ ,u n = ì n m n      ( ) ( ) ( )/ ,v n = í n m n  
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Note that as a result of the remap stage we will have new momenta and masses at the nodes, so to 
recover velocities we will use the previous equations as the definition of velocities for given momenta 
and nodal mass. The total momentum components, ,

u v
µ µ , which are individually conserved in the 

Lagrangian phase, are 

( ) ( ) ( ),u

n n

ì = m n u n = ì n! !       ( ) ( ) ( ).v

n n

ì = m n v n = í n! !  

It will be useful to define a cell-centered momenta as: 

( )
( )

( ) ( ),
n N c

ì c = m cn u n

!

"      ( )
( )

( ) ( ).
n N c

í c = m cn v n

!

"  

Using this definition and the definition of nodal mass, the total momentum components 
u

,
v

  

can be expressed as:    ( ),u

c

ì = ì c!      ( ).v

c

ì = í c!  Kinetic energy is also most naturally 

defined at the nodes: ( ) ( )
2

.
2

u
K n = m n

r

 The internal energy is naturally defined at the cells as 

E c m c c . The previous equation can be used after the remap phase to define  given E(c) 
and m(c):  ( ) ( ) ( )/ .å c = E c m c  The total energy, which is also conserved in the Lagrangian phase 

is ( ) ( ).
c n

E = E c + K n! !  Later we will require the concept of a cell-centered kinetic energy, 

which we define as follows: ( )
( )

( )
2

.
2n N c

u
K c = m cn

!

"
r

 Using this definition and the definition of 

nodal mass, the total energy, E can be expressed as: ( ) ( )( ).
c

E = E c +K c!  By introducing total 

internal and kinetic energies as: ( ),
c

å= E c! and  ( ).
c

K = K c!  we finally can express the total 

energy as: .E= å+K  

 Rezone Phase 
In the rezone phase, we use the reference Jacobian matrix (RJM) strategy described in [14,21]. 

The RJM rezone algorithm is based on a nonlinear optimization procedure, which requires a valid 
mesh as an initial guess, and so it may be necessary to untangle the mesh (see, e.g., [22]) prior to 
rezoning.  The RJM rezone strategy ensures the continuing geometric quality of the computational 
grid, while keeping the "rezoned" grid at each time step as close as possible to the Lagrangian grid. 
Sets of cells and nodes of rezoned mesh will be denoted by c’ and n’ respectively. 

When the rezoned and Lagrangian grids are sufficiently close to each other, it is possible to use a 
local procedure on the remapping stage, meaning that mass, energy and momentum are exchanged 
only between neighboring cells. Local rezoning is conceptually simpler and computationally less 
expensive than global rezoning. For some of the tests presented in Section Numerical Results, we will 
use the ALE code in the Eulerian framework, so that the rezoned mesh will always coincide with the 
initial mesh. 

 Remap Phase 
To guarantee conservation in the overall ALE simulation, the remapping phase must 

conservatively interpolate the Lagrange solution onto the rezoned grid. The main purpose of this paper 
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is to describe a new algorithm for remapping on general, polygonal, staggered grid, including 
treatment of the density defined in the subcells. Readers interested in the history of remapping methods 
on staggered meshes are referred to [2,3,19,20,16,18].  

To best of our knowledge there is no existing remapping method that addresses all of our 
requirements - remapping on general polygonal staggered mesh with subcell densities. We have 
designed a new remapping strategy consisting of the three following stages:  

First: gathering stage. We define momentum, internal energy, and kinetic energy in the subcells. 
Recall that mass of subcell is already defined as the multiplication of the subcell density by the subcell 
volume. Mass, momentum, internal energy and kinetic energy in the subcells are defined in such a way 
that the corresponding total quantities (defined as the sums over subcells) are the same as at the end of 
the Lagrangian phase, ensuring that the gathering stage is conservative.  

Second: subcell remapping stage. We use the algorithm described in [14] to remap mass, 
momentum, internal, and kinetic energy from the subcells of the Lagrangian mesh to the subcells of  
the new rezoned mesh. This algorithm is linearity- reserving and computationally efficient. It consists 
of a piece-wise linear reconstruction and an approximate  integration based on the notion of swept 
regions.  The algorithm does not require finding the intersections of the Lagrangian mesh with the 
rezoned mesh, which contributes to its efficiency. The algorithm is conservative: total mass, 
momentum, internal and kinetic energy over subcells of the rezoned mesh are the same as mass, 
momentum, internal and kinetic energy over subcells of Lagrangian mesh. The total nergy is also 
conserved, being the sum of (individually conserved) internal and kinetic energies. We suggest that 
remapping internal and kinetic energy separately is more accurate than remapping total energy, 
because we are not merging two quantities that can have very different magnitudes and behavior.  

Third:  scattering stage. We recover the primary variables - subcell density, nodal velocity, and 
cell-centered specific internal energy - on the new rezoned mesh.  

Subcell density is recovered by dividing the remapped mass by the remapped volume of subcell 
from the rezoned mesh. The subcell masses and the corresponding densities are then adjusted using a 
conservative repair procedure [14] to enforce local-bounds, which may be violated during the subcell 
remapping stage. This produces the final subcell density and the corresponding subcell mass that will 
be used in next time step. The new nodal masses and the cell-centered masses are defined using the 
summation convention thanks to subcell values. Next, we define the remapped nodal momenta using 
the remapped subcell momenta, in such a way that total momenta is conserved. New velocity 
components are defined according to their equations (see previous paragraph). Then nodal velocity is 
repaired, resulting in the final velocity that will be used to move the point during the Lagrangian phase 
in the next computational cycle. 

To enforce the conservation of total energy, the discrepancy between the remapped kinetic energy 
in the cell and the kinetic energy that is computed from the remapped subcell masses and the final 
nodal velocities is contributed to the remapped internal energy in the cell. The new internal energy is 
recovered. Finally, the internal energy and the corresponding specific internal energy is conservatively 
repaired. 

The outline of the rest of this paper is as follows. In next section we will give a precise statement 
of our goals for remapping on the staggered mesh and will list the properties of the remapping 
algorithm. Numerical results that demonstrate the accuracy and convergence of the  remapping 
algorithm are presented in Section Numerical Results.  Finally, we conclude the paper in the last 
section. 

Statement of the Remapping 
 
As a result of the Lagrangian phase of a computational cycle, we have a mesh consisting of cells 

{c}, and nodes {n}. We will call this the  Lagrangian or old mesh.  We have values of density, ρ(cn) in 
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subcells, values of specific internal energy, ε(c), in cells, and values of the components of velocity, 
u(n), v(n), at the nodes of the old mesh.  As a result of the rezone phase we have the rezoned or new 
mesh consisting of cells {c'}, and nodes {n'}. An example of old and new meshes is given in figure 2. 

 

Figure 2: Fragment of the Lagrangian (dotted lines) and the rezoned (solid lines) grids.  

The goal of the remapping phase is to find an accurate approximation to r(cn'), e(c'), u(n'), v(n') on 
the new mesh.  Using the primary variables we can define the total mass M, the momentum vector 

u

,
v

, the internal energy e, the  kinetic energy K, and the total energy E on the old mesh (see 
equations in the previous section).  

Our remapping algorithm satisfy the following requirements: 

Conservation. The total mass, momenta and energy of the new mesh must be the same as that 

of the old mesh M ' M ,
u

'

u
,

v

'
v

E ' E.  

This property, combined with the same conservation properties of the Lagrangian phase, 
guarantees the conservation of the overall ALE method. 

Bound-preservation. The remapped density, velocity components and   internal energy have to 
be contained within physically justified bounds, which are determined from the corresponding 
fields in the Lagrangian  solution. For example, density and internal energy have to be positive. 
Moreover, because we assume that the new mesh is obtained by small displacement of the old 
mesh, one can require that the new value lie between bounds determined by the values of its 
neighbors on the old mesh, [14]. 

Accuracy. It is straightforward to define accuracy in the remap  of density; we will require that 
the remap of density is linearity-preserving.  That is, if the values on the old mesh are obtained 
from a global linear function, then the  values on the new mesh have to coincide with the values of 
the same linear function  on the new mesh. For the remap of velocity, there are several different 
notions related to accuracy. For example, one widely used test of consistency is the so-called  
DeBar condition (see for example [2,3]) which can be stated as follows: if a body has a uniform 
velocity and spatially varying density, then  the remapping process should exactly reproduce a 
uniform velocity. For internal  energy, the situation is more complicated.  We will demonstrate the 
accuracy of our new algorithm through the practical expedient of well-chosen test problems.  

Reversibility. If the new and old meshes are identical, then the remapped primary variables 
should show no change. This property is closely related to the notion of being free of inversion 
error, see  [2,3], where it is stated that if the new and old grids coincide, then the remapped velocity 
on new mesh should coincide with the velocity on the old mesh. 

Numerical Results 
In this section we will investigate numerically the performance of our new method. All problems 

are solved in Cartesian coordinates. Our remapping method is unique in the sense that it is intended for 
a staggered mesh of general polygons using a subcell discretization of the density. As previously 
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mentioned we are not aware of any other method that can treat such a remapping problem.  However, 
we are still interested in comparing our new remapping method with other known methods for 
remapping on a staggered mesh.  

 One dimensional tests 
For all 1D test problems we use our new method implemented in a 2D code, but run in an initially 

square mesh with only two cells in y direction. The length of the computational domain in the y 
direction, 

max
y  depends on number of cells in x direction (in the x direction initial mesh is always 

uniform).  In our description of the test problems we will specify only the length of computational 
domain and the number of cells in the x direction. 

 

 Sod Problem. 

The Sod problem is a Riemann shock tube with a relatively small discontinuity, and so is very 
mild test.  Its solution consists of a left rarefaction, a contact discontinuity and a right shock and the 
exact solution is illustrated in Figure 3 by the solid line. 

In our numerical experiments, the computational domain is [0;1]. The discontinuity is initially at 
0.5.  The domain is filled with an ideal gas with γ=1.4. The density/pressure values on the left side of 
the discontinuity are 1.0/1.0, while those on the right side are 0.125/0.1. In Figure 3, we present 
numerical results for the density and the pressure at the final time t=0.25 for a run with N=50, 100, 
200 computational cells in x direction. 

 

Figure 3: Convergence for Sod problem: density and pressure at t=0.25 for 50, 100, 200 points in 
x direction. 

 

 Woodward-Colella Blast Wave Problem. 

The computational domain for this problem has length one, with reflecting walls at the both ends. 
The gas is an ideal gas  with γ=1.4. At t=0., the gas is at rest with an uniform density equal to 1.0. The 
initial pressure is 1000.0 in the leftmost tenth of the domain, 100.0 in the rightmost tenth, and 0.01 
everywhere else. The final problem time is t=0.038. Initially, two shocks and two contacts develop at 
the initial discontinuities and propagate toward one another, while two rarefactions develop, propagate 
toward the walls, and reflect off them. As time progresses, these six initial waves interact and create 
additional contact discontinuities. There is no analytical solution for this problem and typically a 
solution obtained by purely Lagrangian method with very high resolution (N=3600 cells in our case) is 
considered as the reference "truth" (the solid line in Fig.4). As has been mentioned in [19], the  
Lagrangian solution has a flaw, a spurious overshoot at x~ 0.765. In Fig.4 we present numerical results 
obtained by our new method for N=300, 600, 1200 points in x direction.  
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Figure 4: Convergence for Woodward-Colella Blast Wave Problem. Density (zoom) --- left, and 
specific internal energy (zoom) --- right at t=0.038, for 300, 600, 1200 points in x direction 

 

 LeBlanc Shock Tube Problem. 

In this extreme shock tube problem the initial discontinuity  separates a region of very high energy 
and density from one of low energy and density.  This is a much more severe test than the Sod 
Problem.  The computational domain is [0;9] and is filled with an ideal gas with γ=5/3. The gas is 
initially at rest. The initial discontinuity is at x=0.3: (ρ,ε)=(1\,,0.1) for x < 3 and (0.001, 10-7) for x>3. 
The solution consists of a rarefaction moving to the left, and a contact discontinuity and a strong shock 
moving to the right - solid line in  Fig.5. At the final time of t=6.0, the shock wave is located at 
x=7.975. In Fig.5 we present numerical results obtained by our new method for N=361, 721, 1441 
points in x direction.  

 

Figure 5: Convergence for Le Blanc shock tube problem. Specific internal energy (Left: entire 
domain, Right: zoom) at t=0.038, for 300, 600, 1200 points in x direction. 

 Two-dimensional tests 
In this subsection we present numerical results for the Sedov blast wave problem, [25], which 

describes the evolution of a blast wave in a point symmetric explosion; it is an example of a diverging 
shock wave. 

We consider the cylindrically symmetric Sedov problem, in Cartesian coordinates (x,y).  The total 
energy of the explosion is concentrated at the origin and has magnitude E=0.244816 (similar to [7]). 
The material is an ideal gas with γ=1.4 and initially is at rest with an intial density equal to 1. At time 
t=1.0 the exact solution is a cylindrically symmetric diverging shock whose front is at radius, r=1  and 
with a peak density of 6.0 (the solid line in Fig.7).  In our numerical experiments E is concentrated in 
one cell located at the origin (that is, containing the vertex (x,y)=(0,0)). The specific internal energy of 
this cell, c is defined as ε(c)= E/V(c). Therefore the initial pressure is  p=(γ - 1)ρε=0.4 E/V(c). For this 
problem we compare results obtained by our 2D code in three different frameworks:  a purely Eulerian,  
a purely Lagrangian, and an ALE framework.  Simulations in all three frameworks have been carried 
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out on both quadrilateral and polygonal meshes. In the ALE calculation, the rezoning/remapping is 
performed once every 10 Lagrangian steps. The CFL number is chosen to be equal to 0.25 for all 
simulations. For each simulation we show both the initial and the final mesh, with 11 density isolines 
equally distributed in magnitude between 0.0 and 6.0. (Figs.6 and 8). Each isoline has a label that 
refers to a density value in the legend scale. Also we show a 1D plot of density as a function of the 
radius, r, and a corresponding plot of the exact solution (Figs.7 and 9). The 1D plots demonstrate how 
well the numerical solution preserves cylindrical symmetry. 

  

 Quadrilateral Meshes. 

For this set of simulations, the computational domain is a square  [0:1.2] × [0:1.2] whose initial 
mesh consists of 31×31 square cells (top-left mesh in Fig.6). The two top panels in Fig.6 and the left 
panel in Fig.7 show the results of purely Eulerian computations. The symmetry of the solution is 
preserved quite well but the density peak is diminished (ρ=3.55 instead of 6) and the shock wave is 
spread over several cells.  The two panels in the middle of Fig.6 and the central panel in Fig.7 show the 
results of purely Lagrangian computations. The peak density magnitude, 4.9, is much closer to the 
correct value than is the Eulerian computational value.  Also, the symmetry is better preserved in the 
Lagrangian calculation, especially near the peak. However, the Lagrangian mesh has a very low 
geometrical quality near the axis. The two bottom panels in Fig.6 and right panel in Fig.7 show results 
of the ALE computations. The symmetry of the solution is even better than was found in the 
Lagrangian calculations and the peak density is 4.75 which is little bit smaller than in the Lagrangian 
calculations. The geometrical quality of the mesh is significantly improved in comparison with the 
Lagrangian case.  
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Figure 6: Sedov Problem – Quadrilateral Mesh - Mesh (left), and density isolines (right) at t=1.0 
- Eulerian regime (top), Lagrangian regime (middle), ALE regime (bottom) 
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Figure 7: Sedov Problem – Quadrilateral Mesh - Density at t=1.0 as a function of the radius (solid 
line is an exact solution) - Eulerian regime (left), Lagrangian regime (right), ALE regime (bottom) 

In the top part of Table 1 we present the peak density values and also the number of time steps 
needed to reach the final time of t=1.0 for the Eulerian, Lagrangian and ALE computations. It is 
interesting to note that the ALE computation takes the least number of time steps.  The ratio between 
the CPU time spent for the Eulerian regime versus the Lagrangian regime is ~10, between the ALE 
regime and the Lagrangian one is ~2. Remark that these timing comparisions are strongly dependent 
on the details of implementation and are presented to the reader as a ``rough'' approximation. 

 Polygonal Meshes. 

The computational domain is one quarter of a circular disk with radius of rmax=1.2. A polygonal 
mesh is constructed in the computational domain using a Voronoi diagrams for the set of point defined 
as follows: , ,cos( )

i j j i j
x r != ,    , ,sin( ),

i j j i j
y r !=     for 1, ,j J= K      1, , ( )i I j= K , where 

max

1

j

j
r r

J

!
= ,     ( ) 1,

2
I j round j

!" #
= $% &

' (
,     ,

1

( ) 2
i j

i

I j

!
"

#
= , 

and J=31. Moreover function round(x) returns the closest integer to x. According to these formulas, on 
each circle of radius rj points are distributed so that the distance between adjacent points along the 
circle is approximately equal to Δr= rj-1/(J-1). The total number of points is 775. There is exactly one 
Voronoi cell corresponding to each point. The mesh consists of a mixture of convex polygons: 
quadrilaterals, pentagons and hexagons, with a total number of vertices is 1325; the mesh is shown in 
Fig. 8 (top-left panel).  The  resulting polygonal mesh has approximately the same resolution as the 
quadrilateral mesh presented in Fig.6.  Numerical results for the initially polygonal mesh are arranged 
in a similar way as was done for our study of the quadrilateral meshes and are presented in Fig.8, and 
9, and bottom of Table 1. 
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Figure 8: Sedov problem --- Polygonal Mesh. Mesh (left), and density isolines (right) at t=1.0 --- 
Eulerian regime (top), Lagrangian regime (middle), ALE regime (bottom). 

 

 

 

Figure 9: Sedov problem --- Polygonal Mesh. Density at t=1.0 as a function of the radius (solid line 
exact solution) --- Eulerian regime (left), Lagrangian regime (middle), ALE regime (right). 

 
Mesh Type Hydro Regime # Time steps Peak density 

Quad Eulerian 477 3.55 

Quad Lagrangian 375 4.90 

Quad ALE-10 338 4.75 
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Poly Eulerian 1567 3.69 

Poly Lagrangian 603 6.20 

Poly ALE-10 408 5.70 

Table 1: Sedov Problem. Number of time steps needed to reach final time t=1.0 and peak density 
values. 

Qualitatively, the  relative performance of purely Eulerian, purely Lagrangian, and ALE methods 
on polygonal meshes is the same as for quadrilateral meshes. The results of the  purely Eulerian and 
purely Lagrangian calculations on the polygonal mesh exhibit less symmetry than the corresponding 
calculations on the quadrilateral meshes. However, the polygonal mesh behaves better near the axes 
even for purely Lagrangian calculations. The ratio between the CPU time spent for the Eulerian versus 
the Lagrangian regimes is ~20 and between the ALE and Lagrangian regimed ~2. 

 Conclusions 
In this paper we have constructed a full ALE method for use on a staggered polygonal mesh.  The 

method combines and generalizes previous work on the Lagrangian and rezoning phases, and includes 
a new remapping algorithm. 

In the Lagrangian phase of the ALE method we use compatible methods to derive the 
discretizations [6], [7].  We assume a staggered grid where velocity is defined at the nodes, and where 
density and internal energy are defined at cell centers. In addition to nodal and cell-centered quantities, 
our discretization employs subcell masses that serve to introduce  special forces that prevent artificial 
grid distortion and hourglass-type motions, [8]. This adds an additional requirement to the remap phase 
- that the subcell densities (corresponding to subcell masses) have to be conservatively interpolated in 
addition to nodal velocities and cell-centered densities and internal energy. 

In the remap phase, we assume that rezone algorithm produces mesh that is "close" to Lagrangian 
mesh so that a  local remapping algorithm (i.e, where mass and other conserved quantities is only 
exchanged between neighboring cells) can be used. 

Our new remapping algorithm consists of three stages. 

• A gathering stage, where we define momentum, internal energy, and kinetic energy in the 
subcells in a conservative way such that the corresponding total quantities in the cell are 
the same as at the end of the Lagrangian phase. 

• A subcell remapping stage, where we conservatively remap mass, momentum, internal, 
and kinetic energy from the subcells of the Lagrangian mesh to the subcells of the new 
rezoned mesh. 

• A scattering stage, where we conservatively recover the primary variables: subcell 
density, nodal velocity, and cell-centered specific internal energy on the new rezoned 
mesh. 

We have proved that our new remapping algorithm is conservative, reversible, and satisfies the 
DeBar consistency condition. We have also demonstrated computationally that our new remapping 
method is robust and accurate for a series of test problems in one and two dimensions. 
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